Bmstr.Ing. Karl-Heinz Walch Baumeister Walch Eduard-Bodemgasse 6 6020 00436643345822 karlheinz.walch@chello.at

ENERGIEAUSWEIS

Ist-Zustand Bürogebäude

Bürogebäude Eduard-Bodem-Gasse 9

Johann u. Waltraud Knapp Eichenweg 7 6460 Imst

Energieausweis für Nicht-Wohngebäude

gemäß ÖNORM H5055 und Richtlinie 2002/91/EG

Österreichisches Institut für Bautechnik

Gebäude Bürogebäude Eduard-Bodem-Gasse 9

Gebäudeart Bürogebäude **Erbaut im Jahr** 1990

Gebäudezone Katastralgemeinde Amras

Straße Eduard-Bodemgasse 9 **KG - Nummer** 81102

PLZ/Ort 6020 Innsbruck **Einlagezahl**

> Grundstücksnr. 726/1

EigentümerIn Johann u. Waltraud Knapp

> Eichenweg 7 6460 Imst

SPEZIFISCHER HEIZWÄRMEBEDARF BEI 3400 HEIZGRADTAGEN (REFERENZKLIMA) A ++ A + A B HWB-ref* = 65.5 kWh/m²a F G

ERSTELLT

ErstellerIn Bmstr.Ing. Karl-Heinz Walch Organisation Bmstr.Ing. Karl-Heinz Walch

ErstellerIn-Nr. Ausstellungsdatum 28.02.2012 **GWR-Zahl** Gültigkeitsdatum 27.02.2022

Geschäftszahl

Dieser Energieausweis entspricht den Vorgaben der Richtlinie 6 "Energieeinsparung und Wärmeschutz" des Österreichischen Instituts für Bautechnik in Umsetzung der Richtlinie 2002/91/EG über die Gesamtenergieeffizienz von Gebäuden und des Energieausweis-Vorlage-Gesetzes (EAVG)

EA-01-2007-SW-a EA-NWG 25.04.2007

Energieausweis für Nicht-Wohngebäude

gemäß ÖNORM H5055 und Richtlinie 2002/91/EG

OIB

Österreichisches Institut für Bautechnik

GEBÄUDEDATEN

Brutto-Grundfläche4.526 m²konditioniertes Brutto-Volumen16.123 m³charakteristische Länge (Ic)2,70 mKompaktheit (A/V)0,37 1/mmittlerer U-Wert (Um)0,58 W/m²KLEK - Wert37

KLIMADATEN

KlimaregionNFSeehöhe574 mHeizgradtage4030 KdHeiztage268 dNorm - Außentemperatur-12 °CSoll - Innentemperatur20 °C

	Referenzklima		Standortklima	
	zonenbezogen	spezifisch	zonenbezogen	spezifisch
HWB*	296.235 kWh/a	18,37 kWh/m³a		
HWB	277.038 kWh/a	61,21 kWh/m²a	330.976 kWh/a	73,13 kWh/m²a
WWWB			21.305 kWh/a	4,71 kWh/m²a
NERLT-h				
KB*	821 kWh/a	0,05 kWh/m³a		
KB			46.511 kWh/a	10,28 kWh/m²a
NERLT-k				
NERLT-d				
NE				
HTEB-RH			63.713 kWh/a	14,08 kWh/m²a
HTEB-WW			7.718 kWh/a	1,71 kWh/m²a
HTEB			72.632 kWh/a	16,05 kWh/m²a
KTEB				
HEB			424.913 kWh/a	93,89 kWh/m²a
KEB				
RLTEB				
BelEB			97.655 kWh/a	21,6 kWh/m²a
EEB			569.079 kWh/a	125,74 kWh/m²a
PEB				
CO2				

ERLÄUTERUNGEN

Endenergiebedarf (EEB): Energiemenge die dem Energiesystem des Gebäudes für Heizung und

Warmwasserversorgung inklusive notwendiger Energiemengen für die Hilfsbetriebe

bei einer typischen Standardnutzung zugeführt werden muss.

Die Energiekennzahlen dieses Energieausweises dienen ausschließlich der Information. Aufgrund der idealisierten Eingangsparameter können bei tatsächlicher Nutzung erhebliche Abweichungen auftreten. Insbesondere Nutzungseinheiten in besonderer Lage können aus Gründen der Geometrie und der Lage hinsichtlich ihrer Energiekennzahlen von den hier angegebenen abweichen.

EA-01-2007-SW-a EA-NWG 25.04.2007

Datenblatt GEQ

Bürogebäude Eduard-Bodem-Gasse 9

Gebäudedaten

Brutto-Grundfläche BGF 4.526 m² charakteristische Länge I_C 2,70 m Konditioniertes Brutto-Volumen 16.123 m³ Kompaktheit A_B V_B 0,37 m $^{-1}$ Gebäudehüllfläche A_B 5.971 m²

Ermittlung der Eingabedaten

Geometrische Daten:

Bauphysikalische Daten:

Haustechnik Daten:

Ergebnisse am tatsächlichen Standort: Innsbruck

_eitwert L _T		3.464,5	W/K
Mittlerer U-Wert (Wärmedurchgangskoeffiz	rient) U _m	0,58	W/m²K
Heizlast P _{tot}		156,1	kW
Transmissionswärmeverluste Q _T		384.802	kWh/a
∟üftungswärmeverluste Q _V		156.999	kWh/a
Solare Wärmegewinne passiv η x Q _s		61.803	kWh/a
nnere Wärmegewinne passiv η x Q i	mittelschwere Bauweise	149.021	kWh/a
Heizwärmebedarf Q _h		330.976	kWh/a
	VD.	70.40	1-1A/I- / 2-

Flächenbezogener Heizwärmebedarf HWB_{BGF} 73,13 kWh/m²a

Ergebnisse Referenzklima

- 		
Transmissionswärmeverluste Q _T	322.669	kWh/a
Lüftungswärmeverluste Q _V	131.609	kWh/a
Solare Wärmegewinne passiv η x Q _s	48.170	kWh/a
Innere Wärmegewinne passiv $\eta x Q_i$	129.069	kWh/a
Heizwärmebedarf Q _h	277.038	kWh/a
Flächenbezogener Heizwärmebedarf HWB _{RGE ref}	61.21	kWh/m²a

Haustechniksystem

Raumheizung: Flüssige und gasförmige Brennstoffe (Gas)

Warmwasser: Stromheizung (Strom)

RLT Anlage: Natürliche Konditionierung

Berechnungsgrundlagen

Der Energieausweis wurde mit folgenden ÖNORMen und Hilfsmitteln erstellt: GEQ von Zehentmayer Software GmbH www.geq.at Bauteile nach ON EN ISO 6946 / Fenster nach ON EN ISO 10077-1 / Erdberührte Bauteile vereinfacht nach ON B 8110-6 / Unkonditionierte Gebäudeteile vereinfacht nach ON B 8110-6 / Wärmebrücken pauschal nach ON B 8110-6 / Verschattung vereinfacht nach ON B 8110-6

Verwendete Normen und Richtlinien:

 $B\,8110\text{-}1\ /\,ON\,B\,8110\text{-}2\ /\,ON\,B\,8110\text{-}3\ /\,ON\,B\,8110\text{-}5\ /\,ON\,B\,8110\text{-}6\ /\,ON\,H\,5055\ /\,ON\,H\,5056\ /\,ON\,H\,5057\ /\,ON\,H\,5058\ /\,ON\,H\,5059\ /\,ON\,EN\,ISO\,13790\ /\,ON\,EN\,ISO\,13370\ /\,ON\,EN\,ISO\,6946\ /\,ON\,EN\,ISO\,10077\text{-}1\ /\,ON\,EN\,12831\ /\,OIB\,Richtlinie\,6$

Anmerkung:

Der Energieausweis dient zur Information über den energetischen Standard des Gebäudes. Der Berechnung liegen durchschnittliche Klimadaten, standardisierte interne Wärmegewinne sowie ein standardisiertes Nutzerverhalten zugrunde. Die errechneten Bedarfswerte können daher von den tatsächlichen Verbrauchswerten abweichen. Bei Mehrfamilienwohnhäusern ergeben sich je nach Lage der Wohnung im Gebäude unterschiedliche Energiekennzahlen. Für die exakte Auslegung der Heizungsanlage muss eine Berechnung der Heizlast gemäß ÖNORM H 7500 erstellt werden.

Heizlast

Bürogebäude Eduard-Bodem-Gasse 9

Vereinfachte Berechnung des zeitbezogenen Wärmeverlustes (Heizlast) von Gebäuden gemäß Energieausweis

Berechnungsblatt

Bauherr Datum: 28.02.2012

Johann u. Waltraud Knapp

Eichenweg 7 6460 Imst

Tel.: 004351236400 Unterschrift Stempel Planer

Norm-Außentemperatur: -12 °C Standort: Innsbruck
Berechnungs-Raumtemperatur: 20 °C Brutto-Rauminhalt der

Temperatur-Differenz: 32 K beheizten Gebäudeteile: 16.122,98 m³
Gebäudehüllfläche: 5.970,99 m²

Bautei	le	Fläche	Wärmed koeffiz.	Korr faktor	Korr faktor	AxUxf
		A [m²]	U [W/m² K]	f [1]	ffh [1]	[W/K]
AW01	Außenwand-Betonhohlblock	549,46	0,256	1,00		140,48
AW02	Träger-Säulen Wände Stahlbeton	407,83	0,293	1,00		119,61
DD01	Überbauten über EG	68,76	0,292	1,00		20,10
FD01	Flachdachdecke über 1.OG	1.874,63	0,152	1,00		284,18
FD02	Flachdach über Stiegenhaus-Stahlbeton	33,75	0,187	1,00		6,31
FD03	Terrassen	67,78	0,244	1,00		16,55
FE/TÜ	Fenster u. Türen	696,27	1,859	1,00		1.294,29
EB01	erdanliegender Fußboden Süd-EG	5,40	0,493	0,70		1,87
KD01	Decke zu unkonditioniertem ungedämmten Keller	464,21	0,455	0,70		147,90
EC01	erdanliegender Fußboden in konditioniertem Keller (<=1,5m unter Erdreich)	171,05	3,048	0,70		365,01
EC02	erdanliegender Fußboden in konditioniertem Keller (>1,5m unter Erdreich)	268,71	3,048	0,50		409,58
EW01	erdanliegende Wand (<=1,5m unter Erdreich)	59,42	0,411	0,80		19,53
EW02	erdanliegende Wand (>1,5m unter Erdreich)	45,61	0,411	0,60		11,25
ID01	Decke zu geschlossener Tiefgarage	1.103,19	0,455	0,80		401,70
IW01	Wand zu geschlossener Tiefgarage	88,20	0,324	0,80		22,85
IW02	Wand zu unkonditioniertem ungedämmten Keller	66,72	0,324	0,70		15,13
ZD01	warme Zwischendecke über UG	433,45	0,472			
ZD02	warme Zwischendecke über EG	1.974,96	1,931			
	Summe OBEN-Bauteile	2.101,41				
	Summe UNTEN-Bauteile	2.081,32				
	Summe Außenwandflächen	1.062,32				
	Summe Innenwandflächen	154,92				
	Fensteranteil in Außenwänden 35,0 %	571,02				
	Fenster in Deckenflächen	125,25				

Heizlast Bürogebäude Eduard-Bodem-Gasse 9

Summe	[W/K]	3.276
Wärmebrücken (pauschal)	[W/K]	188
Transmissions - Leitwert L _T	[W/K]	3.464
Lüftungs - Leitwert L _V	[W/K]	1.414,85
Gebäude - Heizlast P _{tot}	[kW]	156,14
Flächenbez. Heizlast P ₁ bei einer EBF von 4.526 m ²	[W/m ² BGF]	34,50
Gebäude - Heizlast P tot (EN 12831 vereinfacht) Luftwechsel = 1,00 1/1	h [kW]	251,20

Die berechnete Heizlast kann von jener gemäß ÖNORM H 7500 bzw. EN ISO 12831 abweichen und ersetzt nicht den Nachweis der Gebäude-Normheizlast gemäß ÖNORM H 7500 bzw. EN ISO 12831. Die vereinfachte Heizlast EN 12831 berücksichtigt nicht die Aufheizleistung und gilt nur für Standardfälle.

Projekt: Bürogebäude Eduard-Bodem-Gasse 9		Blatt-Nr.: 1
Auftraggeber Johann u. Waltraud Knapp	Bearbeitungsnr.:	
Bauteilbezeichnung: erdanliegender Fußboden in konditioniertem	Kurzbezeichnung: EC01	I
Bauteiltyp: erdanliegender Fußboden in konditioniertem Keller		
Wärmedurchgangskoeffizient berechnet nach ÖNC	000000000000000	
U - Wert	3,05 [W/m²K]	
		A M 1 : 20

Kor	nstruktionsaufbau und Berechnung				
	Baustoffschichten		d	λ	$R = d / \lambda$
	von innen nach außen		Dicke	Leitfähigkeit	Durchlaßw.
Nr	Bezeichnung		[m]	[W/mK]	[m ² K/W]
1	Gussasphalt	В	0,020	0,800	0,025
2	Estrich	В	0,070	1,330	0,053
3	PAE-Folie	В	0,0002	0,500	
4	Stahlbeton	В	0,200	2,500	0,080
5	Rollierung	В	* 0,100	0,700	0,143
wä	rmetechnisch relevante Dicke des Bauteils [m]		0,290		
Dic	ke des Bauteils [m]		0,390		
Summe der Wärmeübergangswiderstände R _{si} + R _{se} 0,170 [m²K/W]					
Wä	rmedurchgangswiderstand	$R_T = R_{si} + \sum R_t +$	R _{se}	0,328	[m ² K/W]
Wä	rmedurchgangskoeffizient	U = 1 / R _T		3,05	[W/m ² K]

^{*...} diese Schicht zählt nicht zur Berechnung

Projekt: Bürogebäude Eduard-Bodem-Gasse 9		Blatt-Nr.: 2
Auftraggeber Johann u. Waltraud Knapp	Bearbeitungsnr.:	
Bauteilbezeichnung: erdanliegender Fußboden in konditioniertem	Kurzbezeichnung: EC02	I
Bauteiltyp: erdanliegender Fußboden in konditioniertem Keller	· (>1,5m unter	
Wärmedurchgangskoeffizient berechnet nach ÖNC	ORM EN ISO 6946	
U - Wert	3,05 [W/m²K]	
		A M 1 : 20

Kor	Konstruktionsaufbau und Berechnung					
	Baustoffschichten		d	λ	$R = d / \lambda$	
	von innen nach außen		Dicke	Leitfähigkeit	Durchlaßw.	
Nr	Bezeichnung		[m]	[W/mK]	[m²K/W]	
1	Gussasphalt	В	0,020	0,800	0,025	
2	Estrich	В	0,070	1,330	0,053	
3	PAE-Folie	В	0,0002	0,500		
4	Stahlbeton	В	0,200	2,500	0,080	
5	Rollierung	B *	0,100	0,700	0,143	
wä	metechnisch relevante Dicke des Bauteils [m]		0,290			
Dic	ke des Bauteils [m]		0,390			
Sur	Summe der Wärmeübergangswiderstände R si + R se 0,170 [m²K/W]					
Wä	rmedurchgangswiderstand	$R_T = R_{si} + \sum R_t + F_t$	₹ _{se}	0,328	[m ² K/W]	
Wä	rmedurchgangskoeffizient	U = 1 / R _T		3,05	[W/m ² K]	

^{*...} diese Schicht zählt nicht zur Berechnung

Projekt: Bürogebäude Eduard-Bodem-Gasse 9		Blatt-Nr.:	3
Auftraggeber Johann u. Waltraud Knapp		Bearbeitungsnr.:	
Bauteilbezeichnung: erdanliegende Wand (<=1,5m unter Erdreich)	Kurzbezeichnung: EW01		
Bauteiltyp: erdanliegende Wand (<=1,5m unter Erdreich)		ı	Α
Wärmedurchgangskoeffizient berechnet nach ÖNC	ORM EN ISO 6946		
U - Wert	0,41 [W/m²K]		
		M 1 :	10

Konstruktionsaufbau und Berechnung					
	Baustoffschichten		d	λ	$R = d / \lambda$
	von innen nach außen		Dicke	Leitfähigkeit	Durchlaßw.
Nr	Bezeichnung		[m]	[W/mK]	[m²K/W]
1	Kalkzementputz	В	0,015	0,700	0,021
2	Stahlbeton in WU-Qualität	В	0,300	2,500	0,120
3	steinodur® UKD (100mm)	В	0,080	0,037	2,162
4	Drainmatte	В *	0,005	1,000	0,005
wä	rmetechnisch relevante Dicke des Bauteils [m]		0,395		
Dic	ke des Bauteils [m]		0,400		
Sui	mme der Wärmeübergangswiderstände	R _{si} +R _{se}		0,130	[m²K/W]
Wä	rmedurchgangswiderstand	$R_T = R_{si} + \sum R_t +$	R _{se}	2,433	[m²K/W]
Wä	rmedurchgangskoeffizient	U = 1 / R _T		0,41	[W/m²K]

^{*...} diese Schicht zählt nicht zur Berechnung

Projekt: Bürogebäude Eduard-Bodem-Gasse 9		Blatt-Nr.:	4
Auftraggeber Johann u. Waltraud Knapp	Bearbeitungsnr.:		
Bauteilbezeichnung: erdanliegende Wand (>1,5m unter Erdreich)	Kurzbezeichnung: EW02		
Bauteiltyp: erdanliegende Wand (>1,5m unter Erdreich)			Α
Wärmedurchgangskoeffizient berechnet nach ÖN	ORM EN ISO 6946		
U - Wert	0,41 [W/m²K]		
		M 1 :	10

Konstruktionsaufbau und Berechnung							
Baustoffschichten		d	λ	$R = d / \lambda$			
von innen nach außen		Dicke	Leitfähigkeit	Durchlaßw.			
Bezeichnung		[m]	[W/mK]	[m²K/W]			
Kalkzementputz	В	0,015	0,700	0,021			
Stahlbeton in WU-Qualität	В	0,300	2,500	0,120			
steinodur® UKD (100mm)	В	0,080	0,037	2,162			
Drainmatte	В *	0,005	1,000	0,005			
metechnisch relevante Dicke des Bauteils [m]		0,395					
ke des Bauteils [m]		0,400					
mme der Wärmeübergangswiderstände	R _{si} +R _{se}		0,130	[m²K/W]			
rmedurchgangswiderstand	$R_T = R_{si} + \sum R_t + I$	₹ _{se}	2,433	[m ² K/W]			
rmedurchgangskoeffizient	U = 1 / R _T		0,41	[W/m²K]			
	Baustoffschichten von innen nach außen Bezeichnung Kalkzementputz Stahlbeton in WU-Qualität steinodur® UKD (100mm) Drainmatte	Baustoffschichtenvon innen nach außenBezeichnungKalkzementputzBStahlbeton in WU-QualitätBsteinodur® UKD (100mm)BDrainmatteB *rmetechnisch relevante Dicke des Bauteils [m]ke des Bauteils [m]mme der Wärmeübergangswiderstände $R_{si} + R_{se}$ armedurchgangswiderstand $R_{T} = R_{si} + \Sigma R_{t} + R_{t}$	Baustoffschichtendvon innen nach außenDickeBezeichnung[m]KalkzementputzB $0,015$ Stahlbeton in WU-QualitätB $0,300$ steinodur® UKD (100mm)B $0,080$ DrainmatteB $*$ $0,005$ rmetechnisch relevante Dicke des Bauteils [m] $0,395$ ke des Bauteils [m] $0,400$	Baustoffschichtend λ von innen nach außenDickeLeitfähigkeitBezeichnung[m][W/mK]KalkzementputzB0,0150,700Stahlbeton in WU-QualitätB0,3002,500steinodur® UKD (100mm)B0,0800,037DrainmatteB* 0,0051,000rmetechnisch relevante Dicke des Bauteils [m]0,395ke des Bauteils [m]0,400 mme der Wärmeübergangswiderstände $R_{si} + R_{se}$ $R_{T} = R_{si} + \Sigma R_{t} + R_{se}$ $R_{t} + R_{se}$ $R_{t} + R_{se}$ $R_{t} + R_{se}$ $R_{t} + R_{t} + R_{t}$ $R_{t} + R_{t}$			

^{*...} diese Schicht zählt nicht zur Berechnung

U-Wert Berechnung

Projekt: Bürogebäude Eduard-Bodem-Gasse 9 Auftraggeber Johann u. Waltraud Knapp		Blatt-Nr.:	5	
		Bearbeitungsnr.:		
Bauteilbezeichnung: Außenwand-Betonhohlblock		Kurzbezeichnung: AW01		
Bauteiltyp: Außenwand			1	Α
Wärmedurchgangskoeffizient	berechnet nach ÖN			
	U - Wert	0,26 [W/m²K]		
			M 1 :	10

	Decrete West Salter			2	D 1/2
	Baustoffschichten		d	λ	$R = d / \lambda$
	von innen nach außen		Dicke	Leitfähigkeit	Durchlaßw.
Nr	Bezeichnung		[m]	[W/mK]	[m²K/W]
1	Innenputz	В	0,015	0,700	0,021
2	Betonhohlsteinmauerwerk	В	0,300	0,440	0,682
3	FDP 10	В	0,100	0,033	3,030
4	Spachtelung	В	0,005	1,400	0,004
5	Kunstharzputz	В	0,003	0,700	0,004
Dic	ke des Bauteils [m]		0,423		
Summe der Wärmeübergangswiderstände R si + R se		0,170	[m²K/W]		
Wärmedurchgangswiderstand $R_T = R_{si} + \Sigma R_t + R_{se}$		3,911	[m²K/W]		
Wärmedurchgangskoeffizient $U = 1 / R_T$			0,26	[W/m²K]	

Projekt: Bürogebäude Eduard-Bodem-Gasse 9		Blatt-Nr	::	6	
Auftraggeber Johann u. Waltraud Knapp		Bearbei	tungsnr.:		
	Bauteilbezeichnung: Träger-Säulen Wände Stahlbeton Kurzbezeichnung AW02				
Bauteiltyp: Außenwand		ı		A	
Wä	rmedurchgangskoeffizient berechnet nach (ÖNORM EN ISO 6946			
	U - Wert	0,29 [W/m²K]			
				R	M 1 : 20
Kor	nstruktionsaufbau und Berechnung				
	Baustoffschichten		d	λ	$R = d / \lambda$
Nr	von innen nach außen Bezeichnung		Dicke [m]	Leitfähigkeit [W/mK]	Durchlaßw. [m²K/W]
	Innenputz	В	0,015		0,021
	Stahlbeton (2400)	В	0,450	2,500	0,180
3	FDP 10	В	0,100	0,033	3,030
	Spachtelung	В	0,005	,	0,004
	Kunstharzputz	В	0,003	· ·	0,004
Dic	ke des Bauteils [m]		0,573		
Sui	mme der Wärmeübergangswiderstände	R _{si} +R _{se}		0,170	[m²K/W]
Wä		$R_T = R_{si} + \sum R_t + F_{si}$	₹ _{se}	3,409	[m²K/W]
Wä	rmedurchgangskoeffizient	U = 1 / R _T		0,29	[W/m ² K]

U-Wert Berechnung

Projekt: Bürogebäude Eduard-Bodem-Gasse 9		Blatt-Nr.:	7
Auftraggeber Johann u. Waltraud Knapp		Bearbeitungsnr.:	
Bauteilbezeichnung: Wand zu geschlossener Tiefgarage	Kurzbezeichnung: IW01		
Bauteiltyp: Wand zu geschlossener Tiefgarage		ı	Α
Wärmedurchgangskoeffizient berechnet nach ÖNORM EN ISO 6946			
U - Wert	0,32 [W/m²K]		
		M 1 :	10

					IVI 1 . 10	
Konstruktionsaufbau und Berechnung						
	Baustoffschichten		d	λ	$R = d / \lambda$	
	von innen nach außen		Dicke	Leitfähigkeit	Durchlaßw.	
Nr	Bezeichnung		[m]	[W/mK]	[m²K/W]	
1	Kalkzementputz	В	0,015	0,700	0,021	
2	Betonhohlsteinmauerwerk	В	0,180	0,620	0,290	
3	EPS-F 10	В	0,100	0,040	2,500	
4	RÖFIX 57L Klebespachtel Leicht	В	0,0004	0,600	0,001	
5	Zementputz	В	0,015	1,000	0,015	
Dio	cke des Bauteils [m]		0,310			
Su	mme der Wärmeübergangswiderstände	R _{si} +R _{se}		0,260	[m²K/W]	
Wä	ärmedurchgangswiderstand	÷. ••		3,087	[m²K/W]	
W	irmedurchgangskoeffizient	U = 1 / R _T		0,32	[W/m²K]	

U-Wert Berechnung

Projekt: Bürogebäude Eduard-Bodem-Gasse 9		Blatt-Nr.:	8
Auftraggeber Johann u. Waltraud Knapp		Bearbeitungsnr.:	
Bauteilbezeichnung: Wand zu unkonditioniertem ungedämmten Keller	Kurzbezeichnung:		
Bauteiltyp: Wand zu unkonditioniertem ungedämmten Keller			Α
Wärmedurchgangskoeffizient berechnet nach ÖNG	ORM EN ISO 6946		
U - Wert	0,32 [W/m²K]		
		l v	11:10

			M 1 : 10		
Konstruktionsaufbau und Berechnung					
	Baustoffschichten		d	λ	$R = d / \lambda$
	von innen nach außen		Dicke	Leitfähigkeit	Durchlaßw.
Nr	Bezeichnung		[m]	[W/mK]	[m²K/W]
1	Kalkzementputz	В	0,015	0,700	0,021
2	Betonhohlsteinmauerwerk	В	0,180	0,620	0,290
3	EPS-F 10	В	0,100	0,040	2,500
4	RÖFIX 57L Klebespachtel Leicht	В	0,0004	0,600	0,001
5	Zementputz	В	0,015	1,000	0,015
Dic	ke des Bauteils [m]		0,310		
			'		
Su	mme der Wärmeübergangswiderstände	R _{si} +R _{se}		0,260	[m²K/W]
Wá	armedurchgangswiderstand			3,087	[m²K/W]
Wá	irmedurchgangskoeffizient	U = 1 / R _T		0,32	[W/m ² K]

Projekt:	Bürogebäude Eduard-Bodem	-Gasse 9	Blatt-Nr.:	9
Auftraggebe	er Johann u. Waltraud Knapp		Bearbeitungsnr.:	
D		1, , , ,		

Auftraggeber Johann u. Wal t	raud Knapp		Bearbeitungsnr.:		
Bauteilbezeichnung: erdanliegender Fußboden Süd	-EG	Kurzbezeichnung: EB01		I	
Bauteiltyp: erdanliegender Fußboden (<=1,5m unter Erdreich)					
Wärmedurchgangskoeffizient berechnet nach ÖNORM EN ISO 6946					
	U - Wert	0,49 [W/m²K]	<u> </u>	//////	<u> </u>
				A	M 1 : 20

Konstruktionsaufbau und Berechnung						
	Baustoffschichten		d	λ	$R = d / \lambda$	
	von innen nach außen		Dicke	Leitfähigkeit	Durchlaßw.	
Nr	Bezeichnung		[m]	[W/mK]	[m²K/W]	
1	Fliesenboden	В	0,015	1,000	0,015	
2	Estrichbeton	В	0,065	1,480	0,044	
3	Polyethylenbahn, -folie (PE)	В	0,0005	0,500	0,001	
4	Polyphoplatte	В	0,050	0,030	1,667	
5	Stahlbeton	В	0,300	2,300	0,130	
Dic	ke des Bauteils [m]		0,431			
Summe der Wärmeübergangswiderstände R si + R se			0,170	[m²K/W]		
Wärmedurchgangswiderstand $R_T = R_{si} + \sum R_t + R_{se}$		₹ _{se}	2,027	[m²K/W]		
Wä	Wärmedurchgangskoeffizient U = 1 / R _T			0,49	[W/m²K]	

U-Wert Berechnung

Projekt: Bürogebäude Eduard-Bodem-Gasse 9		Blatt-Nr.:	1	10
Auftraggeber Johann u. Waltraud Knapp		Bearbeitungsnr.:		
Bauteilbezeichnung: Decke zu unkonditioniertem ungedämmten Keller	Kurzbezeichnung: KD01		I	
Bauteiltyp: Decke zu unkonditioniertem ungedämmten Keller		****		5
Wärmedurchgangskoeffizient berechnet nach ÖNC	ORM EN ISO 6946			
U - Wert	0,46 [W/m²K]	<u> </u>	<u> </u>	1
			A M1:2	20
Konstruktionsaufbau und Berechnung				

Konstruktionsaufbau und Berechnung					
	Baustoffschichten		d	λ	$R = d / \lambda$
	von innen nach außen		Dicke	Leitfähigkeit	Durchlaßw.
Nr	Bezeichnung		[m]	[W/mK]	[m ² K/W]
1	Fliesenboden	В	0,015	1,000	0,015
2	Estrichbeton	В	0,065	1,480	0,044
3	Polyethylenbahn, -folie (PE)	В	0,0005	0,500	0,001
4	Polyphoplatte	В	0,050	0,030	1,667
5	Stahlbeton	В	0,300	2,300	0,130
Dic	ke des Bauteils [m]		0,431		
Sui	mme der Wärmeübergangswiderstände	R _{si} +R _{se}		0,340	[m²K/W]
Wärmedurchgangswiderstand		$R_T = R_{si} + \sum R_t +$	R _{se}	2,197	[m ² K/W]
Wä	irmedurchgangskoeffizient	U = 1 / R _T	, -	0,46	[W/m²K]

U-Wert Berechnung

Projekt: Bürogebäude Eduard-Bodem-Gasse 9		Blatt-Nr.: 11
Auftraggeber Johann u. Waltraud Knapp	Bearbeitungsnr.:	
Bauteilbezeichnung: Decke zu geschlossener Tiefgarage	Kurzbezeichnung: ID01	
Bauteiltyp: Decke zu geschlossener Tiefgarage		
Wärmedurchgangskoeffizient berechnet nach ÖNC		
U - Wert	0,46 [W/m²K]	<u> </u>
		A M 1 : 20

	Daniel Washishton				D 1/2	
	Baustoffschichten		d	λ	$R = d / \lambda$	
	von innen nach außen		Dicke	Leitfähigkeit	Durchlaßw.	
Nr	Bezeichnung		[m]	[W/mK]	[m²K/W]	
1	Fliesenboden	В	0,015	1,000	0,015	
2	Estrichbeton	В	0,065	1,480	0,044	
3	Polyethylenbahn, -folie (PE)	В	0,0005	0,500	0,001	
4	Polyphoplatte	В	0,050	0,030	1,667	
5	Stahlbeton	В	0,300	2,300	0,130	
Dic	ke des Bauteils [m]		0,431		·	
Summe der Wärmeübergangswiderstände R si + R se			0,340	[m²K/W]		
Wärmedurchgangswiderstand $R_T = R_{si} + \sum R_t + R_{se}$		2,197	[m²K/W]			
Wärmedurchgangskoeffizient $U = 1 / R_T$			0,46	[W/m²K]		

Projekt:	Projekt: Bürogebäude Eduard-Bodem-Gasse 9		Blatt-Nr.: 12
Auftraggeber Johann u. Waltraud Knapp		Bearbeitungsnr.:	
Bauteilbezeichnung: Kurzbezeichnung: warme Zwischendecke über UG ZD01		: '	
Bauteiltyp: warme Zwischendecke			
Wärmedu	rchgangskoeffizient berechnet n		

0,47 [W/m²K]

U - Wert

Konstruktionsaufbau und Berechnung						
	Baustoffschichten		d	λ	$R = d / \lambda$	
	von innen nach außen		Dicke	Leitfähigkeit	Durchlaßw.	
Nr	Bezeichnung		[m]	[W/mK]	[m²K/W]	
1	Fliesenboden	В	0,015	1,000	0,015	
2	Estrichbeton	В	0,065	1,480	0,044	
3	Polyethylenbahn, -folie (PE)	В	0,0005	0,500	0,001	
4	Polyphoplatte	В	0,050	0,030	1,667	
5	Stahlbeton	В	0,300	2,300	0,130	
Dic	ke des Bauteils [m]		0,431			
			'			
Sui	Summe der Wärmeübergangswiderstände R _{si} + R _{se} 0,260 [m²K/W]					
Wä	Wärmedurchgangswiderstand $R_T = R_{si} + \sum R_t + R_s$		R _{se}	2,117	[m²K/W]	
Wä	Wärmedurchgangskoeffizient $U = 1 / R_T$			0,47	[W/m²K]	

Α

M 1:20

Projekt: Bürogebäude E	Projekt: Bürogebäude Eduard-Bodem-Gasse 9		Blatt-Nr.:	13
Auftraggeber Johann u. Walt	raud Knapp		Bearbeitungsnr.:	
Bauteilbezeichnung: warme Zwischendecke über EC	6	Kurzbezeichnung: ZD02		
Bauteiltyp: warme Zwischendecke				
Wärmedurchgangskoeffizient	berechnet nach ÖN	ORM EN ISO 6946		
	U - Wert	1,93 [W/m²K]		
				A M 1 : 10
Konstruktionsaufbau und Bere	chnung			

	Baustoffschichten		d	λ	$R = d / \lambda$
	von innen nach außen		Dicke	Leitfähigkeit	Durchlaßw.
٧r	Bezeichnung		[m]	[W/mK]	[m ² K/W]
1	Polyamidteppich	В	0,005	0,080	0,063
2	Estrichbeton	В	0,065	1,480	0,044
3	Polyethylenbahn, -folie (PE)	В	0,0005	0,500	0,001
4	Betonhohldiele 360 kg/m² (Decke)	В	0,200	1,330	0,150
Dic	ke des Bauteils [m]		0,271		
Summe der Wärmeübergangswiderstände R si + R se				0,260	[m ² K/W]
Wärmedurchgangswiderstand $R_T = R_{si} + \Sigma R_t$		$R_T = R_{si} + \sum R_t +$	R _{se}	0,518	[m ² K/W]
Wärmedurchgangskoeffizient U = 1 / R _T				1,93	[W/m²K]

Projekt: Bürogebäud	Projekt: Bürogebäude Eduard-Bodem-Gasse 9		Blatt-Nr.: 14
Auftraggeber Johann u. W	altraud Knapp		Bearbeitungsnr.:
Bauteilbezeichnung: Flachdachdecke über 1.0G		Kurzbezeichnung: FD01	A
Bauteiltyp: Außendecke, Wärmestrom n	ach oben		
Wärmedurchgangskoeffizier	nt berechnet nach ÖNC	DRM EN ISO 6946	
	U - Wert	0,15 [W/m²K]	
			I M 1 : 20

Kor	nstruktionsaufbau und Berechnung				
	Baustoffschichten		d	λ	$R = d / \lambda$
	von außen nach innen		Dicke	Leitfähigkeit	Durchlaßw.
٧r	Bezeichnung		[m]	[W/mK]	[m ² K/W]
1	Kies	В *	0,060	0,700	0,086
2	Bautenschutzmatte	В	0,0005	0,038	0,013
3	Polystyrol XPS, HFKW-geschäumt	В	0,200	0,032	6,250
4	PE-Folie als Trennschicht	В	0,0002	0,190	0,001
5	bit. Abdichtungsbahn geflämmt (2-lagig)	В	0,008	0,190	0,042
	Betonhohldiele 360 kg/m² (Decke)	В	0,200	1,330	0,150
wä	rmetechnisch relevante Dicke des Bauteils [m]		0,409		
Dic	ke des Bauteils [m]		0,469		
			'		
Summe der Wärmeübergangswiderstände R _{si} + R _{se} 0,140 [m					[m ² K/W]
Wärmedurchgangswiderstand $R_T = R_{si} + \sum R_t + R_{se}$		R _{se}	6,596	[m ² K/W]	
Wärmedurchgangskoeffizient U = 1 / R _T				0,15	[W/m²K]

^{*...} diese Schicht zählt nicht zur Berechnung

Projekt: Bürogebäude Eduard-Bodem-Gasse 9		Blatt-Nr.: 15				
Auftraggeber Johann u. Walt	raud Knapp		Bearbeitungsnr.:			
Bauteilbezeichnung: Flachdach über Stiegenhaus-St	tahlbeton	Kurzbezeichnung: FD02	Α			
Bauteiltyp: Außendecke, Wärmestrom nach oben						
Wärmedurchgangskoeffizient	berechnet nach ÖN	IORM EN ISO 6946				
	U - Wert	0,19 [W/m²K]				
			I M 1 : 20			
Konstruktionsaufbau und Berechnung						

Konstruktionsaufbau und Berechnung						
	Baustoffschichten		d	λ	$R = d / \lambda$	
	von außen nach innen		Dicke	Leitfähigkeit	Durchlaßw.	
Nr	Bezeichnung		[m]	[W/mK]	[m²K/W]	
1	Kies	В	* 0,060	0,700	0,086	
2	Bautenschutzmatte	В	0,0005	0,038	0,013	
3	Polystyrol XPS, HFKW-geschäumt	В	0,160	0,032	5,000	
4	PE-Folie als Trennschicht	В	0,0002	0,190	0,001	
5	bit. Abdichtungsbahn geflämmt (2-lagig)	В	0,008	0,190	0,042	
6	Betonhohldiele 360 kg/m² (Decke)	В	0,200	1,330	0,150	
wä	rmetechnisch relevante Dicke des Bauteils [m]		0,369			
Dic	ke des Bauteils [m]		0,429			
Summe der Wärmeübergangswiderstände R _{si} + R _{se} 0,140 [m²K/N					[m²K/W]	
Wärmedurchgangswiderstand $R_T = R_{si} + \Sigma R_t + R_{se}$		· R _{se}	5,346	[m ² K/W]		
Wä	Wärmedurchgangskoeffizient $U = 1 / R_T$			0,19	[W/m²K]	

^{*...} diese Schicht zählt nicht zur Berechnung

Projekt: Bürogebäude Eduard-Bodem-Gasse 9		Blatt-Nr	· :	16	
Auftraggeber Johann u. Waltraud Knapp			Bearbe	itungsnr.:	
Bauteilbezeichnung: Terrassen Kurzbezeichnung: FD03		g: A			
Bauteiltyp: Außendecke, Wärmestrom nach oben					
Wär	medurchgangskoeffizient berechnet nach ÖNC	ORM EN ISO 6946			
	U - Wert	0,24 [W/m²K]		<u> </u>	
				I	M 1 : 20
Kon	struktionsaufbau und Berechnung				
	Baustoffschichten		d	λ	$R = d / \lambda$
	0 1:		D: 1	1 1/4/11 1 1/4	5

Kor	struktionsaufbau und Berechnung				
	Baustoffschichten		d	λ	$R = d / \lambda$
	von außen nach innen		Dicke	Leitfähigkeit	Durchlaßw.
Nr	Bezeichnung		[m]	[W/mK]	[m ² K/W]
1	Terrassenplatten-Beton	В	* 0,050	2,000	0,025
2	Luftschichte., W-Fluss n. oben	В	* 0,015	0,103	0,146
3	Bautenschutzmatte	В	0,0005	0,038	0,013
4	Polystyrol XPS, HFKW-geschäumt	В	0,120	0,032	3,750
5	PE-Folie als Trennschicht	В	0,0002	0,190	0,001
6	bit. Abdichtungsbahn geflämmt (2-lagig)	В	0,008	0,190	0,042
7	Betonhohldiele 360 kg/m² (Decke)	В	0,200	1,330	0,150
wäı	metechnisch relevante Dicke des Bauteils [m]		0,329		
Dic	ke des Bauteils [m]		0,394		
Sur	nme der Wärmeübergangswiderstände	R _{si} +R _{se}		0,140	[m²K/W]
Wä	rmedurchgangswiderstand	$R_T = R_{si} + \Sigma R_t +$	R _{se}	4,096	[m²K/W]
Wä	rmedurchgangskoeffizient	U = 1 / R _T		0,24	[W/m ² K]

^{*...} diese Schicht zählt nicht zur Berechnung

U-Wert Berechnung

Projekt: Bürogebäude Eduard-	Bodem-Gasse 9	Blatt-Nr.:	17
Auftraggeber Johann u. Waltraud Kr	парр	Bearbeitungsnr.:	
Bauteilbezeichnung: Überbauten über EG	Kurzbezeichnung: DD01		I
Bauteiltyp: Außendecke, Wärmestrom nach unten	·		
Wärmedurchgangskoeffizient berechne	et nach ÖNORM EN ISO 6946		
U -	Wert 0,29 [W/m²K]		
]	A M1:20

					101 1 . 2
Kor	nstruktionsaufbau und Berechnung				
	Baustoffschichten		d	λ	$R = d / \lambda$
	von innen nach außen		Dicke	Leitfähigkeit	Durchlaßw.
Nr	Bezeichnung		[m]	[W/mK]	[m ² K/W]
1	Polyamidteppich	В	0,005	0,080	0,063
2	Zementestrich	В	0,060	1,330	0,045
3	Betonhohldiele 360 kg/m² (Decke)	В	0,200	1,330	0,150
4	FDPL 10	В	0,100	0,034	2,941
5	Röfix 57L Klebespachtel Leicht	В	0,004	0,600	0,007
6	RÖFIX 700 Edelputz weiss	В	0,003	0,540	0,006
Dic	ke des Bauteils [m]		0,372		•
Sui	mme der Wärmeübergangswiderstände	R _{si} +R _{se}		0,210	[m²K/W]
Wä	irmedurchgangswiderstand	$R_T = R_{si} + \Sigma R_t + F$	₹ _{se}	3,422	[m²K/W]
Wä	irmedurchgangskoeffizient	U = 1 / R _T		0,29	[W/m ² K]

Geometrieausdruck

Brutto-Gescho								4.525,74m ²
Länge [m]		Breite [m]				BGF [m ²]	Anmerkung	
439,750	Х	1,000			=	439,75	Geschäftsbereich	n im UG
2006,260	Χ	1,000			=	2.006,26	Decke UG/EG	
2043,730	Χ	1,000			=		Decke EG/1.OG	
36,000	Χ	1,000			=	36,00	Decke ü. 1.OG S	tgh.
Brutto-Raumin	halt							16.122,98m ³
Länge [m]		Breite [m]	H	öhe [m]		BRI [m³]	Anmerkung	
1552,330	X	1,000	x	1,000	=	1.552.33	BRI im UG	
		1,000		1,000			BRI im EG	
6907,800				1,000			BRI im 1.OG	
79,200		1,000		1,000	=	·	Stgh. über Dach	
,		,		•		,	3	
Brutto-Lüftung	svol	umen (BG	F x 3)					13.577,22m ³
								,
ECO1 ordenlic	2000	dor Eucho	dan in	kondition	iortom K	Collon / 4-4 Fu	m unter	171 0Em2
EC01 - erdanlie			uen in	i kondition	iertein r	•		171,05m ²
Erdreich)ge [m]							Anmerkung	
171,050	Χ	1,000			=	171,05	Fußboden im UG	i
EC02 - erdanlie			den in	n kondition	iertem K	*		268,71m ²
Erdreich)ge [m]		Breite[m]				Fläche [m²]	Anmerkung	
268,710	Х	1,000			=	268,71	Fußboden im UG	i
EW01 - erdanli	egen	de Wand (<=1,5	m unter Er	dreich)			59,42m ²
Länge [m]		Höhe[m]				Fläche [m²]	Anmerkung	
59,420	Х	1,000			=	59.42	Wand im UG	
		,,,,,,						
EW02 - erdanli	egen	de Wand (>1.5m	unter Frd	reich)			45,61m ²
Länge [m]		Höhe[m]	.,			Fläche [m²]	Anmerkung	10,01111
							•	
45,610	Х	1,000			=	45,61	Wand im UG	
AVA/04 A 0 a		I Dataishal	مملطا	l-				4 407 2Cm2
AW01 - Außen			IIDIOC	K		F12 - 1 - 1 - 21	A	1.107,36m ²
Länge [m]		Höhe[m]				Fläche [m²]	Anmerkung	
558,300		1,000			=		Außenwand im E	
494,720		1,000			=	·	Außenwand im C	
54,340	Χ	1,000			_ =	·	Außenwand Stgh	ı. im Dachg.
				_		ürenflächen	557,920m ²	
				Bauteilfläch	ne ohne F	enster/Türen	549,440m ²	
	0	14711	04 1 1					106.07
AW02 - Träger			Stahl	beton				420,95m ²
Länge [m]		Höhe[m]				Fläche [m²]	Anmerkung	
32,450	X	1,000			=	32,45	Außenw UG	
230,880		1,000			=		Außenwand EG	
157,620	Χ	1,000			=	157,62	Außenwand im 1	.OG

Geometrieausdruck

				_			irenflächen enster/Türen	13,130m² 407,820m²	
IW01	- Wand zu	ı ge	eschlossener Tie	fgarage					88,20m ²
	Länge [m]	Ŭ	Höhe[m]				Fläche [m²]	Anmerkung	ŕ
	88,200	Х	1,000			=	88,20	Wand Nord im UG	
IW02	- Wand zเ	ı uı	nkonditioniertem	ungedä	mmten k	(elle	er		66,72m ²
	Länge [m]		Höhe[m]				Fläche [m²]	Anmerkung	
	66,720	Х	1,000			=	66,72	Wand Ost zum Gang	UG
EB01	- erdanlie	ge	nder Fußboden S	Süd-EG					5,40m ²
	Länge [m]		Breite[m]				Fläche [m²]	Anmerkung	
	5,400	Х	1,000			=	5,40	Fußboden außen im	EG
KD01	- Decke z	ะน เ	unkonditionierter	n unged	ämmten	Kel	ler		464,21m ²
	Länge [m]		Breite[m]				Fläche [m²]	Anmerkung	
	464,210	Χ	1,000			=	464,21	Decke ü. UG	
ID01 -	· Decke zı	ı g	eschlossener Tie	fgarage				1.	.103,19m²
	Länge [m]		Breite[m]				Fläche [m²]	Anmerkung	
	1103,190	Х	1,000			=	1.103,19	Decke ü. UG	
ZD01	- warme 2	Zwi	schendecke übe	r UG					433,45m ²
	Länge [m]		Breite[m]				Fläche [m²]	Anmerkung	
	433,450	Х	1,000			=	433,45	Decke ü. Studio UG	
ZD02	- warme Z	Zwi	schendecke übe	r EG				1.	.974,96m²
	Länge [m]		Breite[m]				Fläche [m²]	Anmerkung	
	1974,960	Χ	1,000			=	1.974,96	Decke ü. EG	
FD01	- Flachda	ch	decke über 1.OG					1.	.997,63m²
	Länge [m]		Breite[m]				Fläche [m²]	Anmerkung	
	1997,630	Χ	1,000	abzüglid	ch Fenste	= r-/Tü	1.997,63 irenflächen	Dachdecke ü. 1.OG 123,000m²	
				Bauteilf	läche ohn	e Fe	enster/Türen	1.874,630m ²	
FD02	- Flachda	ch	über Stiegenhau	ıs-Stahlb	eton				36,00m ²
	Länge [m]		Breite[m]				Fläche [m²]	Anmerkung	
	36,000	Χ	1,000			=	36,00	Flachdach Stgh. Nor	d
				_			irenflächen enster/Türen	2,250m² 33,750m²	
EDOS	Torress	or							67 70m²
LD03	- Terrasse Länge [m]	en	Breite[m]				Fläche [m²]	Anmerkung	67,78m ²
	6,300	Х	1,000			=		Fläche Süd ü. Studio	
	61,480		1,000			=		Terrassen ü. EG	
Walch Ba	numanagement	Inn	shruck						

Geometrieausdruck Bürogebäude Eduard-Bodem-Gasse 9

DD01 - Überbau	ten über EG		68,76m ²
Länge [m]	Breite[m]	Fläche [m²]	Anmerkung
68,760	x 1,000	= 68,76	über EG

Fenster und Türen Bürogebäude Eduard-Bodem-Gasse 9

Тур		Bauteil	Anz	. Bezeichnung	Breite [m]	Höhe [m]	Fläche [m²]	Ug U [W/m²K] [W/n	PSI Aq //mK] [m		AxUxf [W/K]	g	fs	Z	ams
horiz.		ED 0.4													
3	OG1	FD01	12	Lichtkuppeln	1,50	1,50	27,00		8,1		67,50	0,62			0,2
3 3	OG1	FD01	6	Lichtkuppeln	2,00	2,00	24,00		7,2		60,00	0,62	0,75		
P B	OG1 OG2	FD01 FD02	12	Lichtkuppeln	2,00	3,00	72,00		21,		180,00	0,62	0,75		
)	UGZ	FD02	1 31	1,50 x 1,50	1,50	1,50	2,25		0,6	58 2,50	5,63	0,62	0,75	1,00	0,2
			31				125,25				313,13				
N	50	A14/04		Fenster	0.50	4 55	5.40		2.0	10 4 70	0.00	0.00	0.75	4 00	0.0
3	EG	AW01 AW01	1		3,50	1,55	5,43		3,8	,	9,22	0,62	0,75		
3 3	EG EG	AW01	1	Fenster Fenster	0,80	1,55 1,55	1,24 2,48		0,8 1,7		2,11	0,62	0,75 0,75		
3	EG	AW01	1	Garagentor	3,13	2,90	9,08		2,7		4,22 22,69	0,62	0,75		
3	EG	AW01	1	Glastüre Müllraum	1,80	2,90	5,22		1,5		8,87	0,62	0,75		
3	EG	AW01	1	Fenster Stgh.	1,60	1,55	2,48		0,7		4,22	0,62	0,75		
3	EG	AW01	1	Türe Lift-Stahl	1,80	2,20	3,96		0,1	2,50	9,90	0,62	0,75		
3	EG	AW01	1	Glastüre-Stgh.	1,70	2,90	4,93		1,4		8,38	0,62	0,75		
3	EG	AW01	2	Geschäftstüren-Glas	1,29	2,90	7,48		2,2		12,72	0,62	0,75		
3	EG	AW01	1	Portal	6,30	2,90	18,27		5,4		31,06	0,62	0,75	,	,
3	EG	AW01	1	Portal	7,27	2,90	21,08		6,3		35,84	0,62	0,75		
,	OG1	AW01	1	Fenster	2,80	1,50	4,20		1,2		7,14	0,62	0,75		
3	OG1	AW01	1	Fenster	4,60	1,50	6,90		2,0		11,73	0,62	0,75		
,	OG1	AW01	1	Fenster	7,70	1,50	11,55		3,4		19,64	0,62	0,75		
,	OG1	AW01	1	Fenster	4,57	1,50	6,86		2,0		11,65	0,62	0,75		
ŀ	OG1	AW01	2	Fenster Stgh.	1,60	1,50	4,80		1,4		8,16	0,62	0,75	1,00	0,
	OG1	AW01	1	Fenster	1,60	1,50	2,40		0,7	2 1,70	4,08	0,62	0,75		
i	OG1	AW01	2	Fenster	7,50	1,50	22,50		6,7	75 1,70	38,25	0,62	0,75	1,00	0,
			21		1		140,86				249,88				
0															
3	EG	AW01	3	Portale	2,95	2,90	25,67		7,7	70 1,70	43,63	0,62	0,75	1,00	0,3
3	EG	AW01	2	Portale	5,00	2,90	29,00		8,7	70 1,70	49,30	0,62	0,75	1,00	0,3
3	OG1	AW01	3	Fenster	5,70	1,50	25,65		7,7	70 1,70	43,61	0,62	0,75	1,00	0,
;	OG1	AW01	1	Fenster	6,50	1,50	9,75		2,9	3 1,70	16,58	0,62	0,75	1,00	0,
3	OG1	AW01	1	Fenstertüre	1,00	2,30	2,30		0,6	1,70	3,91	0,62	0,75	1,00	0,3
1	OG1	AW01	3	Fenster	4,20	1,50	18,90		5,6	1,70	32,13	0,62	0,75	1,00	0,
			13				111,27				189,16				
S	KC.	A14/00	2	Cabaabtfanatar	2.50	4.05	6.05		4.	0 470	10.62	0.60	0.75	1 00	0.1
	KG	AW02		Schachtfenster	2,50	1,25	6,25		4,3		10,63	0,62	0,75		
	EG	AW01 AW01	1	Portal	3,10	2,90	8,99		2,7		15,28	0,62	0,75		
	EG EG	AW01	1	Portal Portal+SchiebetEing.	1,70 7,50	2,90 2,90	4,93 21,75		1,4 6,5		8,38 36,98	0,62	0,75 0,75		
ļ		AW01	1	· ·	!										
ļ	EG OG1	AW01	2	Portal Fenster	7,70	2,90 1,50	22,33 12,00		6,7 3,6		37,96 20,40	0,62	0,75 0,75		
ļ					1										
	OG1 OG1	AW01 AW01	1	Fenster Fenstertüre	1,30	1,50 2,30	1,95 2,30		0,6 0,6		3,32 3,91	0,62	0,75 0,75		
	OG1	AW01	1	Fenster	3,70	1,50	2,30 5,55		1,6		9,44	0,62	0,75		
ļ	OG1	AW01	1	_	3,60	1,50	5,40		1,6		9,44	0,62	0,75		
	OG1	AW01	1	Fenster	1,90	1,50	2,85		0,8		4,85	0,62	0,75		
	OG1	AW01	1	Fenster	7,50	1,50	11,25		3,3		19,13	0,62	0,75		
	001	/11101	14	. 0.10101	1,50	1,50	105,55		5,0	1,70	179,46	0,02	0,70	1,00	
			. 4				100,00				113,40				
SO															

Fenster und Türen Bürogebäude Eduard-Bodem-Gasse 9

Тур		Bauteil	Anz	. Bezeichnung	Breite [m]	Höhe [m]	Fläche [m²]	Ug [W/m²K]	Uf [W/m²K]	PSI [W/mK]	Ag [m²]	Uw [W/m²K]	AxUxf [W/K]	g	fs	Z	amsc
В	EG	AW01	1	Geschäftseing. Glas	3,00	2,90	8,70				2,61	1,70	14,79	0,62	0,75	1,00	0,56
В	EG	AW01	1	Portal+Eingang	9,30	2,90	26,97				8,09	1,70	45,85	0,62	0,75	1,00	0,56
В	OG1	AW01	1	Fenstertüre-Balkon	2,00	2,30	4,60				1,38	1,70	7,82	0,62	0,75	1,00	0,56
В	OG1	AW01	1	Fenster Erker	2,70	1,50	4,05				1,22	1,70	6,89	0,62	0,75	1,00	0,56
			4				44,32						75,35				
SW																	
В	EG	AW01	1	Fenster	0,70	1,55	1,09				0,33	1,70	1,84	0,62	0,75	1,00	0,56
В	EG	AW01	1	Hauseingang-Glas	3,00	2,90	8,70				2,61	1,70	14,79	0,62	0,75	1,00	0,56
В	OG1	AW01	1	Fenster Erker	2,70	1,50	4,05				1,22	1,70	6,89	0,62	0,75	1,00	0,56
			3		•		13,84						23,52				
W																	
В	KG	AW02	2	Fenster zur Rampe	2,20	1,25	5,50				3,85	1,70	9,35	0,62	0,75	1,00	0,39
В	KG	AW02	1	Fenster	1,10	1,25	1,38				0,96	1,70	2,34	0,62	0,75	1,00	0,39
В	EG	AW01	3	Portale	5,75	2,90	50,03				35,02	1,70	85,04	0,62	0,75	1,00	0,39
В	EG	AW01	4	Fenster	5,75	1,55	35,65				24,96	1,70	60,61	0,62	0,75	1,00	0,39
В	OG1	AW01	1	Fenster	4,70	1,50	7,05				2,12	1,70	11,99	0,62	0,75	1,00	0,39
В	OG1	AW01	1	Fenstertüre	1,00	2,30	2,30				0,69	1,70	3,91	0,62	0,75	1,00	0,39
В	OG1	AW01	4	Fenster	5,70	1,50	34,20				10,26	1,70	58,14	0,62	0,75	1,00	0,39
В	OG1	AW01	1	Fenster	4,20	1,50	6,30				1,89	1,70	10,71	0,62	0,75	1,00	0,39
В	OG1	AW01	1	Fenster	3,20	1,50	4,80				1,44	1,70	8,16	0,62	0,75	1,00	0,39
В	OG1	AW01	1	Fenstertüre	1,00	2,30	2,30				0,69	1,70	3,91	0,62	0,75	1,00	0,39
В	OG1	AW01	1	Fenster	3,80	1,50	5,70				1,71	1,70	9,69	0,62	0,75	1,00	0,39
			20				155,21						263,85				
Summe	!		106				696,30						1.294,35				

Ug... Uwert Glas Uf... Uwert Rahmen PSI... Linearer Korrekturkoeffizient Ag... Glasfläche g... Energiedurchlassgrad Verglasung fs... Verschattungsfaktor

amsc... Param. zur Bewert. der Aktivierung von Sonnenschutzeinricht. Sommer

Typ... Prüfnormmaßtyp z... Abminderungsfakt. für bewegliche Sonnenschutzeinricht.

B... Fenster gehört zum Bestand des Gebäudes

Monatsbilanz Standort HWB Bürogebäude Eduard-Bodem-Gasse 9

Standort: Innsbruck

BGF [m^2] = 4.525,74 $L_T[W/K]$ = 3.464,49 Innentemp.[$^{\circ}C$] = 20 BRI [m^3] = 16.122,98 $L_V[W/K]$ = 1.414,85 qih [W/m^2] = 3,75

Monate	Tage	Mittlere Außen- temperaturen	Transmissions- wärme- verluste	Lüftungs- wärme- verluste	Wärme- verluste	Innere Gewinne	Solare Gewinne	Gesamt- Gewinne	Verhältnis Gewinn/ Verlust	Ausnutz- ungsgrad	Wärme- bedarf
		[°C]	[kWh/a]	[kWh/a]	[kWh/a]	[kWh/a]	[kWh/a]	[kWh/a]			[kWh/a]
Jänner	31	-2,69	58.472	24.047	82.519	14.276	2.737	17.013	0,21	1,00	65.510
Februar	28	-0,87	48.593	19.239	67.832	12.754	4.084	16.839	0,25	1,00	51.003
März	31	2,85	44.209	18.181	62.391	14.276	6.166	20.442	0,33	1,00	41.994
April	30	7,09	32.210	13.093	45.302	13.769	7.431	21.200	0,47	0,99	24.333
Mai	31	11,69	21.413	8.806	30.219	14.276	9.092	23.369	0,77	0,92	8.642
Juni	30	14,74	13.112	5.330	18.441	13.769	8.705	22.474	1,22	0,74	1.705
Juli	31	16,55	8.905	3.662	12.567	14.276	9.177	23.454	1,87	0,53	244
August	31	16,01	10.280	4.228	14.507	14.276	8.693	22.969	1,58	0,61	540
September	30	13,03	17.389	7.069	24.458	13.769	7.055	20.824	0,85	0,90	5.793
Oktober	31	8,10	30.685	12.619	43.304	14.276	5.033	19.309	0,45	0,99	24.168
November	30	2,45	43.789	17.800	61.588	13.769	3.007	16.776	0,27	1,00	44.827
Dezember	31	-1,63	55.745	22.925	78.670	14.276	2.181	16.458	0,21	1,00	62.217
Gesamt	365		384.802	156.999	541.801	167.764	73.362	241.126	0,00	0,00	330.976
			nut	zbare Gev	vinne:	149.021	61.803	210.825			

EKZ = 73,13 kWh/m²a **EKZ = 20,53** kWh/m³a

Ende Heizperiode: 02.06. Beginn Heizperiode: 08.09.

Monatsbilanz Referenzklima HWB Bürogebäude Eduard-Bodem-Gasse 9

Standort: Referenzklima

BGF [m^2] = 4.525,74 $L_T[W/K]$ = 3.464,49 Innentemp.[$^{\circ}C$] = 20 BRI [m^3] = 16.122,98 $L_V[W/K]$ = 1.414,85 qih [W/m^2] = 3,75

Monate	Tage	Mittlere Außen- temperaturen	Transmissions- wärme- verluste	Lüftungs- wärme- verluste	Wärme- verluste	Innere Gewinne	Solare Gewinne	Gesamt- Gewinne	Verhältnis Gewinn/ Verlust	Ausnutz- ungsgrad	Wärme- bedarf
		[°C]	[kWh/a]	[kWh/a]	[kWh/a]	[kWh/a]	[kWh/a]	[kWh/a]			[kWh/a]
Jänner	31	-1,53	55.495	22.823	78.318	14.276	2.419	16.696	0,21	1,00	61.627
Februar	28	0,73	44.863	17.763	62.626	12.754	3.918	16.672	0,27	1,00	45.967
März	31	4,81	39.153	16.102	55.255	14.276	5.896	20.173	0,37	1,00	35.156
April	30	9,62	25.892	10.525	36.417	13.769	7.368	21.137	0,58	0,97	15.842
Mai	31	14,20	14.950	6.148	21.098	14.276	9.486	23.763	1,13	0,78	2.488
Juni	30	17,33	6.660	2.707	9.367	13.769	9.422	23.191	2,48	0,40	53
Juli	31	19,12	2.268	933	3.201	14.276	9.838	24.114	7,53	0,13	0
August	31	18,56	3.712	1.526	5.238	14.276	8.731	23.007	4,39	0,23	2
September	30	15,03	12.397	5.039	17.437	13.769	6.762	20.531	1,18	0,76	1.794
Oktober	31	9,64	26.704	10.982	37.686	14.276	4.794	19.070	0,51	0,98	18.908
November	30	4,16	39.512	16.061	55.573	13.769	2.518	16.287	0,29	1,00	39.307
Dezember	31	0,19	51.062	20.999	72.061	14.276	1.896	16.173	0,22	1,00	55.894
Gesamt	365		322.669	131.609	454.277	167.764	73.050	240.814	0,00	0,00	277.038
			nut	zbare Gev	vinne:	129.069	48.170	177.239			

EKZ = 61,21 kWh/m²a **EKZ = 17,18** kWh/m³a

Kühlbedarf Standort Bürogebäude Eduard-Bodem-Gasse 9

Standort: Innsbruck

BGF $[m^2] = 4.525,74$ $L_T[W/K] = 3.464,49$ Innentemp.[°C] = 26

BRI $[m^3] = 16.122,98$ $qic [W/m^2] = 7,50$ fcorr = 1,40

Monate	Tage	Mittlere Außen-	Transmissions- wärme-	wärme-	Wärme- verluste	Innere Gewinne	Solare Gewinne	Gesamt- Gewinne	Gewinn/	Ausnutz- ungsgrad	Kühl- bedarf
		temperaturen [°C]	verluste [kWh/a]	verluste [kWh/a]	[kWh/a]	[kWh/a]	[kWh/a]	[kWh/a]	Verlust		[kWh/a]
Jänner	31	-2,69	73.938	30.407	104.345	28.553	3.649	32.202	0,31	1,00	76
Februar	28	-0,87	62.561	24.770	87.331	25.508	5.446	30.954	0,35	1,00	132
März	31	2,85	59.675	24.542	84.216	28.553	8.221	36.774	0,44	0,99	419
April	30	7,09	47.176	19.176	66.353	27.538	9.908	37.446	0,56	0,98	1.247
Mai	31	11,69	36.879	15.166	52.045	28.553	12.123	40.676	0,78	0,92	4.519
Juni	30	14,74	28.078	11.413	39.492	27.538	11.606	39.144	0,99	0,84	8.730
Juli	31	16,55	24.370	10.022	34.393	28.553	12.237	40.789	1,19	0,76	13.818
August	31	16,01	25.745	10.588	36.333	28.553	11.590	40.143	1,10	0,79	11.674
September	30	13,03	32.356	13.152	45.508	27.538	9.407	36.945	0,81	0,91	4.622
Oktober	31	8,10	46.151	18.980	65.130	28.553	6.710	35.263	0,54	0,98	1.001
November	30	2,45	58.755	23.883	82.639	27.538	4.010	31.548	0,38	1,00	195
Dezember	31	-1,63	71.210	29.286	100.496	28.553	2.908	31.461	0,31	1,00	79
Gesamt	365		566.895	231.386	798.281	335.528	97.816	433.344	0,00		46.511

10,28 kWh/m²a KB =

Außen induzierter Kühlbedarf Bürogebäude Eduard-Bodem-Gasse 9

Standort: Referenzklima

BGF [m²] = 4.525,74 L_T[W/K] = 3.464,49 Innentemp.[°C] = 26

BRI $[m^3] = 16.122,98$ qic $[W/m^2] = 7,50$ fcorr = 1,40

Gesamt	365		504.762	69.947	574.709	0	97.400	97.400	0,00		821
Dezember	31	0,19	66.527	9.219	75.746	0	2.529	2.529	0,03	1,00	0
November	30	4,16	54.478	7.549	62.028	0	3.358	3.358	0,05	1,00	0
Oktober	31	9,64	42.169	5.844	48.013	0	6.392	6.392	0,13	1,00	0
September	30	15,03	27.364	3.792	31.156	0	9.016	9.016	0,29	1,00	5
August	31	18,56	19.177	2.657	21.835	0	11.641	11.641	0,53	0,99	165
Juli	31	19,12	17.734	2.457	20.191	0	13.117	13.117	0,65	0,97	484
Juni	30	17,33	21.627	2.997	24.624	0	12.563	12.563	0,51	0,99	142
Mai	31	14,20	30.415	4.215	34.630	0	12.649	12.649	0,37	1,00	24
April	30	9,62	40.859	5.662	46.521	0	9.825	9.825	0,21	1,00	1
März	31	4,81	54.619	7.569	62.188	0	7.862	7.862	0,13	1,00	0
Februar	28	0,73	58.832	8.153	66.985	0	5.224	5.224	0,08	1,00	0
Jänner	31	-1,53	70.961	9.833	80.794	0	3.226	3.226	0,04	1,00	0
		[°C]	[kWh/a]	[kWh/a]	[kWh/a]	[kWh/a]	[kWh/a]	[kWh/a]			[kWh/a]
Monate	Tage	Mittlere Außen- temperaturen	Transmissions- wärme- verluste	Lüftungs- wärme- verluste	Wärme- verluste	Innere Gewinne	Solare Gewinne	Gesamt- Gewinne	Verhältnis Gewinn/ Verlust	Ausnutz- ungsgrad	Kühl- bedarf

 $KB^* = 0,05 \text{ kWh/m}^3 \text{a}$ $KB^* = 50,90 \text{ Wh/m}^3 \text{a}$

Raumheizung - Eingabedaten

Allgemeine Daten

Art der Raumheizung gebäudezentral

<u>Wärmeabgabe</u>

Wärmeabgabetyp Kleinflächige Wärmeabgabe wie Radiatoren, Einzelraumheizer

Systemtemperatur Heizung 70°/55° - Kleinflächige Abgabe

Regelfähigkeit Raumthermostat-Zonenregelung mit Zeitsteuerung

Heizkostenabrechnung Individuelle Wärmeverbrauchsermittlung und Heizkostenabrechnung (Fixwert)

Wärmeverteilung

	gedämmt	Verhältnis Dämmstoffdicke zu Rohrdurchmesser	Dämmung Armaturen		konditioniert [%]
Verteilleitungen	Ja	2/3	Nein	167,35	0
Steigleitungen	Ja	2/3	Nein	333,02	100
Anbindeleitunge	n Ja	2/3	Nein	2.331,15	Längen It. Default

Wärmespeicher kein Wärmespeicher vorhanden

Wärmebereitstellung

Bereitstellungssystem Flüssige und gasförmige Brennstoffe

Energieträger Gas

Modulierung mit Modulierungsfähigkeit

Baujahr Kessel nach 1994

Nennwärmeleistung 158,38 kW Defaultwert

Standort nicht konditionierter Bereich

Heizgerät Zentralheizgerät (Standardkessel)

Betriebsweise gleitender Betrieb

☐ Heizkessel mit Gebläseunterstützung

Hilfsenergie - elektrische Leistung

Kesselpumpe 297,10 W Defaultwert Umwälzpumpe 297,10 W Defaultwert

WWB-Eingabe

Bürogebäude Eduard-Bodem-Gasse 9

Warmwasserbereitung - Eingabedaten

Allgemeine Daten

Art der Warmwasserb. dezentral

Warmwasserbereitung getrennt von Raumheizung

<u>Wärmeabgabe</u>

Heizkostenabrechnung Keine individuelle Wärmeverbrauchsmessung

Wärmeverteilung ohne Zirkulation

gedämmt Verhältnis Leitungslänge konditioniert

Dämmstoffdicke zu [m] [%] Rohrdurchmesser

Verteilleitungen 0,00

Steigleitungen 0,00

Stichleitungen Ja 1/3 199,81 Material Stahl 2,42 W/m

Längen It. Default

Wärmespeicher kein Wärmespeicher vorhanden

Wärmebereitstellung

Bereitstellungssystem Stromheizung

Heizenergiebedarf - HEB - GESAMT

Heizenergiebedarf (HEB) $Q_{HEB} = 424.913 \text{ kWh/a}$

Heiztechnikenergiebedarf (HTEB) $Q_{HTEB} = 72.632 \text{ kWh/a}$

	Heizwärm	ebe	darf - HWB
Transmissionswärmeverluste Lüftungswärmeverluste	${f Q}_{f V}$	=	384.802 kWh/a 156.999 kWh/a
Wärmeverluste	Q _I	=	541.801 kWh/a
Solare Wärmegewinne	Q_s	=	61.803 kWh/a
Innere Wärmegewinne	Q_{i}	=	149.021 kWh/a
Wärmegewinne	$\overline{\mathtt{Q}_{g}}$	=	210.825 kWh/a
Heizwärmebedarf	Q _h	=	330.976 kWh/a

Warmwasserbereitung - WWB

21.305 kWh/a

Qtw

rmee	

Warmwasserwärmebedarf (WWWB)

waiiiwasseiwaiiiiebedaii (www.b)	Qtw -	21.303 KWII/a
Verluste der Wärmeabgabe Verluste der Wärmeverteilung Verluste des Wärmespeichers Verluste der Wärmebereitstellung	$Q_{TW,WA} = Q_{TW,WV} = Q_{TW,WS} = Q_{TW,WB} = Q_{TW,WB}$	5.631 kWh/a 1.980 kWh/a 0 kWh/a 107 kWh/a
Verluste Warmwasserbereitung	Q _{TW} =	7.718 kWh/a
<u>Hilfsenergie</u>		
Energiebedarf Wärmeverteilung	$Q_{TW,WV,HE} =$	0 kWh/a
Energiebedarf Wärmespeicherung	Q _{TW,WS,HE} =	0 kWh/a
Energiebedarf Wärmebereitstellung	$Q_{TW,WB,HE} =$	0 kWh/a
Summe Hilfsenergiebedarf	Q _{TW,HE} =	0 kWh/a
HEB-WW (Warmwasser)	Q _{HEB,TW} =	29.023 kWh/a
HTEB-WW (Warmwasser)	$Q_{HTEB,TW}=$	7.718 kWh/a

Heizenergiebedarf

Bürogebäude Eduard-Bodem-Gasse 9

The state of the s	Raumhe	izu	ng - RH
<u>Wärmeenergie</u>			
Heizwärmebedarf (HWB)	Q _h	=	330.976 kWh/a
Verluste der Wärmeabgabe	$Q_{H,WA}$	=	15.350 kWh/a
Verluste der Wärmeverteilung	$Q_{H,WV}$	=	87.427 kWh/a
Verluste des Wärmespeichers	$Q_{H,WS}$	=	0 kWh/a
Verluste der Wärmebereitstellung	Q H,WB	=	53.995 kWh/a
Verluste Raumheizung	Q_{H}	=	156.772 kWh/a
<u>Hilfsenergie</u>			
Energiebedarf Wärmeabgabe	$Q_{H,WA,HE}$	=	0 kWh/a
Energiebedarf Wärmeverteilung	$Q_{H,WV,HE}$	=	687 kWh/a
Energiebedarf Wärmespeicherung	$Q_{H,WS,HE}$	=	0 kWh/a
Energiebedarf Wärmebereitstellung	$Q_{H,WB,HE}$		515 kWh/a
Summe Hilfsenergiebedarf	Q _{H,HE}	=	1.202 kWh/a
HEB-RH (Raumheizung)	Q _{HEB,H}	=	394.689 kWh/a
HTEB-RH (Raumheizung)	Q _{HTEB,H}	=	63.713 kWh/a

Zurückgewinnbare Verluste

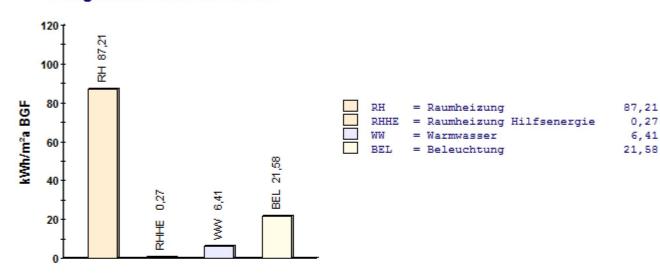
Energie Analyse

Bürogebäude Eduard-Bodem-Gasse 9

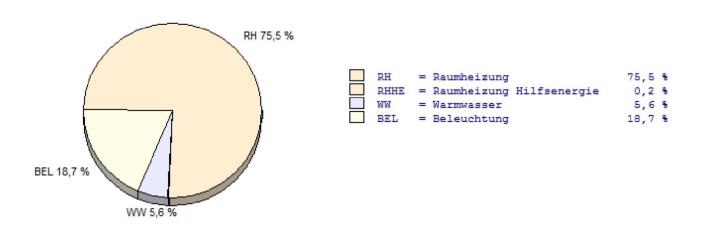
Erdgas Raumheizung 394.689 kWh 41.546 m³

Elektrische Energie

127.880 kWh

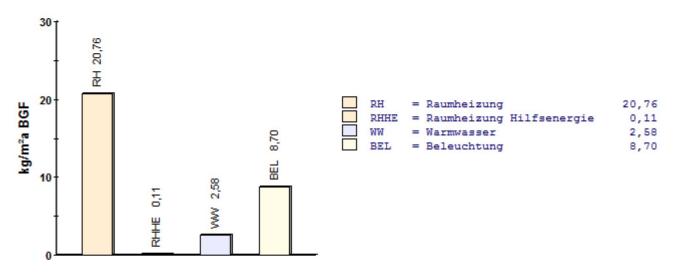

127.880 kWh

Raumheizung Hilfsenergie, Warmwasser, Beleuchtung

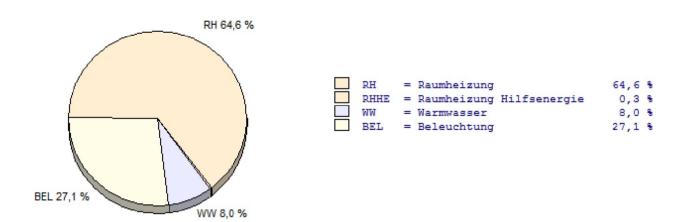

Gesamt

522.568 kWh

Energiebedarf in kWh/m²a BGF

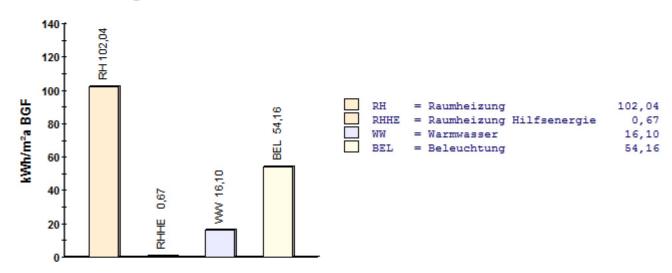


Energiebedarf in %

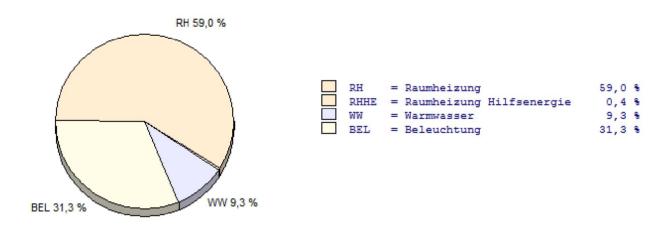


Der Berechnung liegen durchschnittliche Klimadaten, standardisierte interne Wärmegewinne sowie ein standardisiertes Nutzerverhalten zugrunde. Die errechneten Bedarfswerte und Kosten können daher von den tatsächlichen Verbrauchswerten abweichen.

CO2 Emission in kg/m²a BGF



CO2 Emission in %



Der Berechnung liegen durchschnittliche Klimadaten, standardisierte interne Wärmegewinne sowie ein standardisiertes Nutzerverhalten zugrunde. Die errechneten Bedarfswerte und Kosten können daher von den tatsächlichen Verbrauchswerten abweichen.

Primärenergie in kWh/m²a BGF

Primärenergie in %

Der Berechnung liegen durchschnittliche Klimadaten, standardisierte interne Wärmegewinne sowie ein standardisiertes Nutzerverhalten zugrunde. Die errechneten Bedarfswerte und Kosten können daher von den tatsächlichen Verbrauchswerten abweichen.

Energie Analyse Details

CO2-Emission, Primärenergienbedarf

	Energiebedarf [kWh]	Heizwert [kWh/Einh Heizmittelbedarf	n.]CO2 Faktor [kg/kWh] CO2-Emission [kg]	PEB Faktor PEB [kWh]	
Raumheizung Erdgas	394.689	9,500 41.546 m³	0,238 93.935,90	1,170 461.786	
Raumheizung Hilfsenergie Elektrische Energie	1.202	1,000 1.202 kWh	0,403 484,21	2,510 3.016	
Warmwasser Elektrische Energie	29.023	1,000 29.023 kWh	0,403 11.696,10	2,510 72.847	
Beleuchtung Elektrische Energie	97.655	1,000 97.655 kWh	0,403 39.355,13	2,510 245.115	
	522.568		145.471,34	782.763	

Der Berechnung liegen durchschnittliche Klimadaten, standardisierte interne Wärmegewinne sowie ein standardisiertes Nutzerverhalten zugrunde. Die errechneten Bedarfswerte und Kosten können daher von den tatsächlichen Verbrauchswerten abweichen.

Beleuchtungsenergiebedarf Bürogebäude Eduard-Bodem-Gasse 9

Berechnung des Beleuchtungsenergiebedarfs

Eingab	ewerte
--------	--------

Gebäudetyp	Bürogebäude
Zeit Tageslichtnutzung	2970 h
Zeit Kunstlichtnutzung	258 h
Notbeleuchtung vorhanden	/

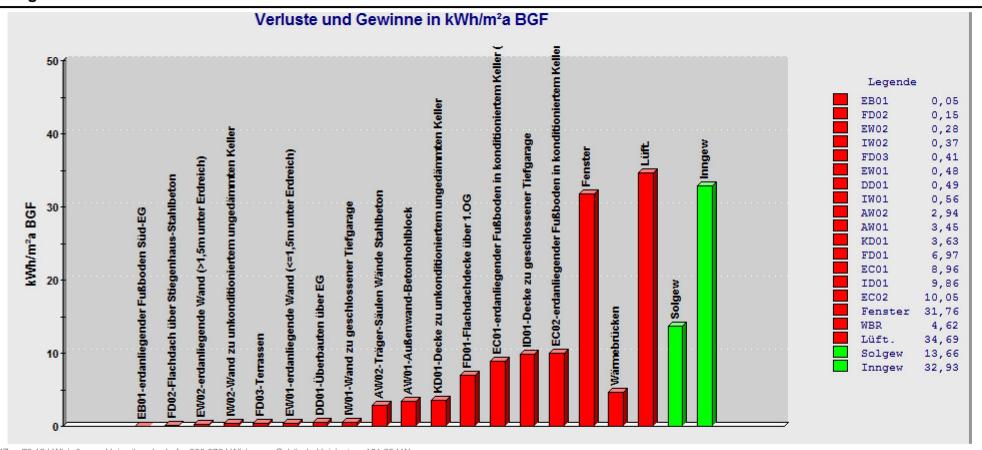
Tageslicht-Teilbetriebsfaktor 1,0 (Handschaltung)
Belegungs-Teilbetriebsfaktor 1,0 (Handschaltung)

Konstantlichtfaktor 0,83

Leerlaufverlust-Leistungen:

Leuchten für Notbeleuchtung 1 kWh/(m²a)
Beleuchtungskontrollgeräte im Standby 0 kWh/(m²a)

LENI Benchmark


Raumaufteilung	Leuchtmittel	Art der Leuchte	Anteil [%]
Gesamtes Gebäude	Leuchtstofflampe T26 mit VVG	Spiegelraster, Stehleuchten direktstrahlend	100

Ergebnisse			
Ī	Bruttogeschoßfläche	4525,7	m²
ŀ	benötigte Bewertungsleistung für elektrische Beleuchtung	35098	W
j	ährliche Beleuchtungsenergie	97655	kWh/a
(effektive jährliche Betriebsstunden	3228	h

LENI	21,6 kWh/m²a
	21,0 KWII/III Q

32,2 kWh/m²

Ausdruck Grafik Bürogebäude Eduard-Bodem-Gasse 9

EKZ = 73,13 kWh/m²a Heizwärmebedarf = 330.976 kWh/a Gebäude Heizlast = 151,83 kW

⁻ zur Optimierung bietet sich der Bauteil mit dem größten Verlustanteil an.

⁻ die Transmissionsverluste pro Jahr ergeben sich aus dem Bauteil-U-Wert, dem Temperatur-Korrekturfaktor sowie der Bauteilfläche (unter Berücksichtigung der Klimadaten des Gebäude-Standortes).

Qv...Lüftungsverluste des Gebäudes (werden durch Lüften verursacht, zur Optimierung empfiehlt sich eine Wärmerückgewinnungsanlage)

Qi...Interne Gewinne (entstehen durch Betrieb elektrischer Geräte, künstlicher Beleuchtung und Körperwärme von Personen)

Qs...Solare Gewinne (entstehen infolge von Strahlungstransmission durch transparente Bauteile(Fenster))